Постройте график функции и найдите все значение , при которых прямая имеет с графиком данной функции ровно одну общую точку.
Найдем ОДЗ, исходя из двух соображений:
Арифметический квадратный корень имеет смысл только из неотрицательных чисел.
Но данное выражение находится в знаменателе дроби, следовательно, нулю оно равняться не может. Поэтому неравенство должно быть строгим.
Решим его методом интервалов.
Теперь упростим выражение.
Выколотая точка, в которой происходит разрыв гиперболы, имеет координаты
(2; 0,5).
Подставив эти координаты в уравнение прямой y = kx, найдем граничное значение параметра k.
k = 0,25
Таким образом, прямая y = kx пересекает график в одной точке при все значениях k, больше или равно, чем 0,25.
Ответ: